Pinhole Cameras

For the first Light & Sound Action Project, GCE Juniors investigated the following guiding question:

Who says you need to buy a camera?

Here’s the scenario students were challenged with:

Cameras get faster and lighter by the day. Nowadays, most smartphones are also cameras, oftentimes as powerful as (or even more powerful than) any old-fashioned cameras. Still, having a powerful camera doesn’t mean being a great photographer, nor knowing how cameras actually work. That’s why the photographer Abelardo Morell decided to take a step back in time, using the “camera obscura” to take his pictures, turning entire rooms into cameras!

Morell posted a challenge to High School students, asking them to drop their cellphones and build their own pinhole camera, which is a smaller version using similar concepts, in order to create images as they used to be created before technology made things so fast. Your camera doesn’t need to be the size of a room (as Morell’s), but just a camera able to produce at least one photograph.

Please click on the film strip to the right to see the students’ pinhole cameras and the calculations they used to effectively take a photograph.


Alignment with Common Core Math & NextGen Standards

CCSS.Math.Content.HSG-SRT.A.2 Given two figures, use the definition of similarity in terms of similarity transformations to decide if they are similar; explain using similarity transformations the meaning of similarity for triangles as the equality of all corresponding pairs of angles and the proportionality of all corresponding pairs of sides.

CCSS.Math.Content.HSG-SRT.B.5 Use congruence and similarity criteria for triangles to solve problems and to prove relationships in geometric figures.

CCSS.Math.Content.HSG-SRT.C.6 Understand that by similarity, side ratios in right triangles are properties of the angles in the triangle, leading to definitions of trigonometric ratios for acute angles.

HS-PS4-3. Evaluate the claims, evidence, and reasoning behind the idea that electromagnetic radiation can be described either by a wave model or a particle model, and that for some situations one model is more useful than the other.
WHST.9-12.2 Communicate technical information or ideas (e.g. about phenomena and/or the process of development and the design and performance of a proposed process or system) in multiple formats (including orally, graphically, textually, and mathematically). (HS-PS4-5)

Student Projects